The One with ...

研究用のメモなどを公開しています

TeXの柱とノンブルの設定

jsbookクラスをつかった場合の柱の設定方法を忘れないためにメモを残しておきます.

最終的な出力目標は

偶数頁のヘッダ左側に章タイトル,奇数頁のヘッダ右側にセクションタイトル

偶数頁のフッタ左側に頁番号,奇数頁のフッタ右側にセクションタイトル

であると仮定します.これをデザインAと呼ぶことにしましょう.

\chapterコマンドはデフォルト設定で開始1頁目に\thispagestyle{plain}を実行するので,章のはじめだけ設定したスタイルが表示されないことが しばしばあります.まずはこれを制御します.

直感的に分かりやすいやり方は,\chapterコマンドのすぐ後に自分で\thispagestyle{empty}\thispagestyle{fancy} を使って,\thispagestyle{plain}を上書きしてやることです.

しかしこの方法だと全ての\chapterに同じ命令を書き込む必要があるのであまりスマートではありません. \newcommandでコマンドを定義すれば多少はラクになりますが,章が多いとはやはり煩雑です.

一番簡単な方法は pLaTeX2e 新ドキュメントクラス の指示通りにプリアンブルに

\makeatletter
\renewcommand{\chapter}{%
  \if@openright\cleardoublepage\else\clearpage\fi
  \global\@topnum\z@
  \secdef\@chapter\@schapter}
\makeatother

と書く方法です.この\renewcommandによって,章開始1頁目は自分で設定した柱のスタイルに一致します. どうしてこれでうまくいくのか,実はよくわかっていません.おそらく, jsbook.cls\chapterの定義にある\plainifnotemptyの削除により, \thispagestyle{plain}を実行しないのではないかと推測します.\plainifnotemptyというコマンドは全体のpagestyleemptyでないならplainにせよ,という命令です. ですからこの命令が有効だと,empty以外のpagestyleを使うと,無視されるという現象が生じるのでしょう.

次に, デザインAを実現するには\thispagestyle{fancy}の中身を設定する必要があるので, これを調整します.例としてはこんな感じです.

\pagestyle{fancy}
\fancyhead{} % clear all header fields
\renewcommand{\chaptermark}[1]{\markboth{第\ \thechapter\ 章\,\, #1}{}}
\fancyhead[RO]{{\footnotesize \rightmark}}
\fancyhead[LE]{{\footnotesize \leftmark}}
\renewcommand{\headrulewidth}{0pt} %ヘッダの罫線を消す 
\fancyfoot{} % clear all footer fields
\fancyfoot[LE,RO]{{\footnotesize \thepage}}%頁番号の表示を偶数頁と奇数頁に分けて指定.
\cfoot{}

\fancyheadfancyfootのオプションは

R: 右側 L: 左側 O: 奇数頁 E: 偶数頁

を組み合わせて指定します.例えば \fancyfoot[LE,RO]{{\footnotesize \thepage}} は,「LEが偶数頁のフッターの左側」「ROが奇数頁のフッターの右側」に頁数を示す,という指定です.

もし\frontmatter\chapterを使っている場合は,

\renewcommand{\chaptermark}[1]{\markboth{第\ \thechapter\ 章\,\, #1}{}}

の部分を

\renewcommand{\chaptermark}[1]{#1}{}}

などに改めて定義してください.こうすることで柱を「第0章 イントロダクション」ではなく「イントロダクション」という見出しに変更できます. 一方で\mainmatterは「第1章 先行研究のレビュー」のように,{\markboth{第\ \thechapter\ 章\,\, #1}を使います.

要するにポイントは

  1. \renewcommand{\chapter}で章開始頁を修正

  2. \frontmatter用に\pagestyleを定義

  3. \mainmatter用に\pagestyleを定義

です.\frontmatter\mainmatterの柱が同じなら定義は1種類でOKです.

tikzのメモ

描き方を忘れないためのメモです.

tikzで関数のグラフを描きたいとき,

\draw [very thick] (始点座標) to [out=5, in=-90] (終点座標);

のようにオプション[out=5, in=-90]で始まりの角度と終わりの角度を指定すると簡単に描けます. 効用関数系のグラフだったら,大体これでいけるでしょう.

f:id:hamada7418:20180830200233p:plain

正規分布のような曲線を描きたい場合は

\draw plot[smooth] (\x, {exp(-0.5* \x * \x)/sqrt(2 * pi)});

こんな感じで関数を記述すればtikzの描画機能だけでグラフを作成してくれます. なおオプションの[smooth]を忘れるとカクカクした線になってしまいます.

f:id:hamada7418:20180830200253p:plain

座標を書く場合は\foreachコマンドで繰り返しを記述すると楽できます.

\draw[thick, ->] (-5,0) -- (5,0) node [below] {$x$};%x軸
\draw[thick, ->] (0,-1) -- (0,5) node [left] {$y$};%y軸
\node at (0,0) [anchor=north east] {O};
\foreach \x in {-4,-3,-2,-1,1,2,3,4}
\draw (\x cm,.2) -- (\x cm,0) node[anchor=north] {$\x$};

最近はMathematicaで図を作成→pdf出力→include→tikzでお化粧 という方法を多用していました.tikzだけで完結するなら,そのほうが楽かもしれません.

Agent-based modelのチュートリアル

MesaというPythonライブラリの中に所得分布の生成モデル(Dragulescu & Yakovenko 2000)を題材にしたチュートリアルが含まれている. なかなかよくできているのだが,学部生向けとしてはちょっとコードが複雑すぎるので授業用資料として簡略化してみた*1

この例でなんとなくPythonの特徴も分かるし,Agent-based simulationの雛形として演習の課題や卒論に使えると思う.

重要なのはコードじゃなくて,モデルのアイデアのほうだ.Dragulescu & Yakovenko のアイデアはシンプルでありながら現象の本質を表現したよいモデルだと思う.

詳細は下記のjupyter notebookをご覧ください

github.com

*1:クラスオブジェクトを使わなければもっと短く書けるのだが,クラスの例を示すために,あえてエージェントをクラス化してある

ggplot2による事後分布の視覚化

絶対忘れるので自分用にメモしておく.

目的

Stanで推定した結果を分布のまま直接比較したい.

ggplot2用のデータフレームの作り方

流れはこんな感じ.

  • Stanで推定した結果をfitに記録(CSVで記録すると結果的に遅かった.sample_file からのサンプル列の取り出しは面倒.たいした量じゃないので今回はRDataを保存してloadする).
  • stanfitオブジェクトをas.data.frame()でデータフレームに変換
  • パラメータの各列を1列にスタック(95年と2015年で年齢幅が違うのでindexを小細工したうえでforを回した)
  • ggplot用のインデックス列を作成(年齢,性別,調査年).インデックス列は同じラベルがmcmcサンプルの数だけならぶ.今回は1000×3(chain)個.
  • このときスタックの順番は男女男女とし,性別のインデックスを行方向に対応させる.
  • plotしたいパラメータとインデックス列をデータフレームにまとめ,ggplotにわたす.
  • ggplotのfill=で1つの枠内に男女を並べ,facet_wrap(~ age, ncol = 5)で年齢別に並べる.結果年齢別に男女比較が行列型に並ぶ
  • 調査年比較は,パラメータをスタックする際に,2015,1995の順番で並べる.

コードはこんな感じ. fitに2015年度データの推定結果,fit2に1995年度データの推定結果が記録されている.

結果の一例.

f:id:hamada7418:20170817150851p:plain

暇があったら,tidyverseでもうちょっと可読性を高めたい.

Stanによる推定例:ベルヌーイ分布のパラメータ

連勝記録から勝率を推定する

ある棋士が29連勝した,というデータから,勝利確率をMCMC推定してみる.統計モデルの仮定は次の通りである.

  • 毎回の勝ち負けは独立にベルヌーイ分布に従っている

  • ベルヌーイ分布のパラメータpの事前分布は範囲[0,1]の一様分布とする

StanとRのコードは以下の通り(コードを書くうえで松浦健太郎さんの『StanとRでベイズ統計モデリング』を参考にさせていただきました)

パラメータpの事後分布のプロット.

f:id:hamada7418:20170628100158p:plain

ベルヌーイ分布にしたがう確率変数の例を日常生活の中から見つけてみよう.

ちなみに勝率0.9で29連勝する確率は

0.929=0.04710129

である.

解析的な事後分布の導出

上述の計算機による推定と同様の結果を,手計算によって導出してみよう.

試行数1のベルヌーイ分布の確率関数は

{ \displaystyle
p ( Y | \theta) = \theta^{Y} (1-\theta)^{1-Y}
}

だから,n回試行の同時確率は

{ \displaystyle
\prod_{i=1}^{n} \theta^{Y_{i}} (1-\theta)^{1-Y_{i}}
}

である.この同時関数をパラメータθの関数として見たものが尤度関数{p(y|\theta) }である. θの事前分布としてベータ分布

{ \displaystyle
B(a,b)
}

を仮定する.さて事後分布は

{ \displaystyle
p(\theta|y) \propto p(\theta)p(y|\theta)
}

{ \displaystyle \quad \propto \theta^{a-1} (1-\theta)^{b-1} \prod_{i=1}^{n} \theta^{Y_{i}} (1-\theta)^{1-Y_{i}}
 }

であった.ここで積の前半部分はベータ分布のカーネル 

{ \displaystyle \theta^{a-1} (1-\theta)^{b-1} } 

であり,後半部分はベルヌーイ分布の尤度

{ \displaystyle \prod_{i=1}^{n} \theta^{Y_{i}} (1-\theta)^{1-Y_{i}} }

である.その計算結果は

{ \displaystyle
\theta^{\alpha-1} (1-\theta)^{\beta-1}  }

ただし { \displaystyle \alpha = a + \sum_{i=1}^{n}y_{i}, \quad \beta = b + n - \sum_{i=1}^{n}y_{i} } 

となる.これはベータ分布のカーネルである.つまり事前分布としてベータ分布を指定すると,ベルヌーイ分布のパラメータの事後分布はベータ分布

{ \displaystyle
\theta | y \sim B( a + \sum_{i=1}^{n}y_{i},  b + n - \sum_{i=1}^{n}y_{i})
 }

となる.よって事前分布としてa=1, b=1と仮定すればθの事後分布は

{ \displaystyle
B(1+29, 1+29-29) = B(30, 1)
 }

である.このベータ分布をθの事後確率分布としてplotとしてみよう.まず事前分布がB(1,1)の場合.

f:id:hamada7418:20170713000704p:plain

次に事前分布がB(2, 2)の場合.

f:id:hamada7418:20170713000707p:plain

Stanで推定した結果に対応した確率密度関数のplotを得た*1

*1:厳密に言うと,Stanの結果のplotはMCMCサンプルのヒストグラムなので,確率密度関数のplotではない.

StanからWAICを計算するためのメモ

StanからWAICを計算するためのメモ

豊田本(2017)を参考に,Stanの結果からWAICを計算する方法のメモ.

テキスト198ページ記載のコードは略記のため,そのまま書き写して実行してもStanが動きません*1. 公開されたコードを参考に確率分布のパラメータを適切なブロックで定義すれば,Stanが動きます.

まずStanコード内でモデルの対数尤度を生成量(generated quantities)として定義します.

次にR上でlooパッケージを使って,Stanのサンプリング結果から対数尤度を取り出し,waic関数にわたします*2

それぞれのコードはこんな感じです(ポイントだけ省略して書いています.実際にはデータブロックやパラメータブロックを書かなくてはいけません).

上記のGitHub Gistからの埋め込みは,Gist上で「Embed」をクリップボードにコピーしたものを ブログのソースに張り付けるだけで完了します.

*1:モデルブロック内で宣言したパラメータが存在しないというエラーメッセージがでます.JAGSならこれでも行ける気がしますが

*2:内部的に対数尤度の総和はtargetに自動記録されるけど,平均計算用に対数尤度をベクトルで記録する必要がある,という理解でいいのだろうか?

TeXstudioショートカットキーのカスタマイズ方法

オリジナルのショートカットキーを設定する方法

TeXstudio便利ですね.私は長い間 秀丸+マクロ を使っていましたが,TeX Live導入後は TeXwokrsTeXstudioを併用しています.

さて,TeXstudioでオリジナルのショートカットキーを作成したいと思うことが時々あります.

時間がたつと,すぐにやり方を忘れてしまうので,未来の自分のためにメモを残しておきます.

例.ショートカットキーを使って,ワンストローク

 \begin{align*} 
 &   \\ 
 & 
 \end{align*} 

といった改行込みの数式用テンプレ(環境)を入力したい,という状況を考えます.

方法の概略

「メニュー」にまず登録して,その後ショートカットキーを設定する.

手順
  • メニューから「オプション」→「TeXstudioの設定」を選ぶ.

  • 「高度なオプション」にチェックを入れる(チェックしないと「メニュー項目」が出てこない)

  • 左の列から「メニュー」を選ぶ.次に「数式」の項目から適当な一つを選び,右クリックする.

f:id:hamada7418:20170613155650p:plain

  • 右クリックメニューから「(前に)新規メニューアイテムを挿入」を選択する.新しい項目が挿入されたら,適当な名前を入力する(今回の例では「複数行」という名前にしたと仮定します).

  • 「コマンド」の列に,挿入したいコマンドを書く.例えば

\begin{align}%\ & \ %\ & %\ \end{align}

のように書くと,実行したときにソース上で

 \begin{align*}   
 &   \\   
 &     
 \end{align*} 

が挿入される.メニュー設定のコマンドでは「 %\ 」が改行を意味しています. 「 %| 」で挿入後のカーソル位置を指定できます(必要がなければ指定しなくてもOKです).

  • メニュー登録が完了したら,左の列で「キーボードショートカット」を選択.「数式」の項目を展開すると,今登録した「複数行」があるので「現在のショートカット」のセルをダブルクリックする.

f:id:hamada7418:20170613155654p:plain

  • そこで自分の好きなキーを登録(例として「Ctrl + E 」を登録したと仮定します).登録後,OKボタンを押して設定を終了する.

  • ソース上で「Ctrl + E 」を押す.

ソースに

 \begin{align*}   
 &   \\   
 &     
 \end{align*} 

が挿入されれば成功です.

うまくいったら,同様のやり方でよく使うコマンドを登録して,入力の手間を省きましょう(もともと登録されているものは,ショートカットキーを編集するだけでOKです.なおメニューに登録していないコマンドをショートカットキー登録する方法は知りません).